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ABSTRACT.  

Recent – and less recent – work has been devoted to learning additive value functions or a Choquet 

capacity to represent the preference of a decision maker on a set of alternatives described by their 

performance on the relevant attributes. In this work we compare the ability of related models to represent 

rankings of such alternatives. Our experiments are designed as follows. We generate a number of 

alternatives by drawing at random a vector of evaluations for each of them. We then draw a random order 

on these alternatives and we examine whether this order is representable by a simple weighted sum, a 

Choquet integral with respect to a 2- or 3-additive capacity, an additive value function in general or a 

piecewise-linear additive value function with 2 or 3 pieces. This analysis is performed using linear 

programming and the Kappalab R package. The results explore how representability depends on varying 

the numbers of alternatives and criteria.  
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1. INTRODUCTION  

Additive value functions occupy a dominant position in the models used for representing the preferences 

of a decision maker (DM) on alternatives described by their performance on several attributes (Keeney, 

Raiffa, 1976, Bouyssou and Pirlot, 2004). This model may be used under the necessary condition that the 

DM’s preference satisfies the preference independence condition (Keeney and Raiffa, 1976, p.32). In the 

late 1980’s another model for representing preferences in the multi-attribute context has emerged. The 

use of the Choquet integral – which is better known in the context of decision under risk (Schmeidler, 

1986) – is advocated in the multi-attribute case when a form of interaction between criteria is presumed 

(Grabisch, 1996). A simple example is that of the selection process of students applying for graduate 

studies in management (Grabisch and Labreuche, 2004). Students are evaluated by their past 

performance in mathematics, statistics and language skills. Since skills in maths and stats are correlated 

(maths and stats are, to some extent, redundant attributes), for students good at maths, the jury 

responsible for the selection prefers a student with good linguistic skills to one that is good at stats. 

Things will go the other way around for students that have a weakness in mathematics. In such a 

situation, there is a (negative) interaction between criteria maths and stats and a break of preference 

independence. Note however that interaction between criteria is a property that should not be identified 

with the fact that the preference independence hypothesis is violated: preferences that can be represented 

by a Choquet integral do not necessarily satisfy the preference independence condition, but they do 

satisfy weaker forms of independence such as comonotonic independence (see Wakker, 1989, p. 111) 

and weak separability (see Bouyssou and Pirlot, 2004).  

 

The goal of the present work is to study the ability of the Choquet integral at representing preferences as 

compared to that of the traditional additive value function model. This is the “expressiveness” of the 
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model. In this study, we assume that the Choquet integral is computed directly on the vector of 

performances of the alternatives, without any recoding of these performances by marginal value 

functions. The additive value function model, on the contrary, takes the preferences of the DM on each 

attribute into account by modeling them using possibly non linear functions defined on the range of 

values that is relevant for each attribute. In this setting, there obviously are examples in which the 

preference can be represented by means of an additive value function but not using a Choquet integral. 

One may also conceive of a model in which the Choquet integral is applied to a vector of marginal value 

functions. Such a model would be more expressive since it would encompass the additive value function 

model. We briefly explain in section 4 how it is possible to get an indication on how much more 

expressive is such a model as compared to the simple additive value function model involving the same 

marginal value functions. 

  

In order to assess the relative expressivity of these models, we have performed series of computational 

experiments which we shall describe in section 2. We then analyze the results, draw some conclusions 

and suggest further investigations that seem interesting.  

 

2. THE EXPERIMENTAL SETTING 

The experimental design is roughly the following. For given numbers na of alternatives and nc of criteria 

(or attributes), we generate na alternatives, i.e. na vectors having nc components. The values of the nc 

components can be seen as the performances of the corresponding alternative on the nc criteria (or 

attributes). These are randomly drawn from the uniform distribution on the [0,1] interval. We assume 

w.l.o.g. that the decision maker prefers larger values to smaller ones on all attributes. To fix the ideas, 

consider an alternative a; we denote by (a1, …, anc) the performance vector associated with alternative a. 

 

An strict total order on the na alternatives is drawn at random from a uniform distribution on all orders. 

We then use linear programming or appropriate other routines for checking whether this random order on 

the alternatives can be represented in various models. In each of the considered models, a score is 

computed for each alternative, aggregating the performances on the various attributes. Alternative a is 

judged to be preferred to b if the score of a is greater than the score of b. The following models have 

been considered:  

1. The weighted sum for which the score of alternative a is computed as  

nc

i iiaw
1

, where wi are 

weights that need be determined 

2. The additive value function for which the score of alternative a is computed as )(
1 

nc

i ii au , 

where ui are (marginal value) functions from the [0,1] interval into itself that need be 

determined. For some experiments, two special cases of the general model will also be 

considered, in which ui is a piecewise linear marginal value function. In the first variant, ui has 

two linear pieces corresponding to a division of the [0,1] interval in two equal parts. In the 

second variant there are three linear pieces, the [0,1] interval being divided in three equal sub-

intervals. These two variants will only appear in Figure 2. 

3. A Choquet integral in which the score of alternative a is computed using a particular capacity; 

2-additive and 3-additive capacities are used. In the case of a 2-additive capacity, the score of a 

is computed by means of the following formula:   )(
,,

1 ji

jiji

ij

nc

i ii aamam  



, where mi 

(resp. mij) are weights associated to the criteria (resp. the pairs of criteria) and ji aa  denotes 

the minimum of ai and a j. There are some constraints on the weights which we do not 

explicitly state here (see e.g. Grabisch et al., 2008). The formula for 3-additive capacities is 

similar; it involves an additional term with weights mijk associated with triplets of criteria.  
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All the experiments, including the generation of the alternatives and the orders, are performed using R, a 

free software environment for statistical computing and graphics.  

The parameters of the first two models are searched for using a linear programming software (lpsolve) 

that can be called from R. The linear program involving the constraints expressing the order on the 

alternatives that has been randomly generated is submitted to the solver. The structure of the constraints 

for piecewise linear marginal value functions are inspired by the aggregation-disaggregation approach 

UTA (Jacquet-Lagrèze and Siskos, 1982), while the formulation for checking the existence of an additive 

value function without any restriction on the type of marginal value functions allowed (except that they 

are non-decreasing) is taken from (Greco et al., 2008). For checking the representability by means of a 

Choquet integral and a 2- or 3-additive capacity, we use the Kappalab R package and, specifically, its 

lin.prog.capa.ident command. In all models, the optimization routine seeks to maximize variable , the 

minimal difference in score of two alternatives that are ranked consecutively in the random order.  

 

3. THE RESULTS 

We systematically explored the cases of a number of alternatives na = 4, 5, 6, 10 and, for each value of 

na, a number of criteria nc = 3, 4, 5, 6, 8. For small na (4 to 6), we generated between 50 and 100 

instances of na alternatives and we systematically tried to represent all orders on the alternatives. For na 

= 8 and 10, we generated between 25 and 50 instances and considered only a random sample of 3000 

orders. Table 1 displays the percentage of the orders that can be represented by the various models.   

 

Table 1. Expressivity of the models (%) 

na nc Tot Nb Inst Orders Add 3-cap 2-cap WSum 

4 3 2400 100 24 58.1 48.6 48.6 34.0 

4 4 2400 100 24 72.7 69.1 67.7 53.8 

4 6 2400 100 24 90.6 87.5 87.3 75.0 

4 8 2400 100 24 96.5 - 95.6 91.2 

         

6 3 36000 50 720 24.0 15.0 13.5 4.8 

6 4 43920 61 720 45.0 31.7 28.4 11.8 

6 6 36000 50 720 78.9 69.4 66.1 38.7 

6 8 36000 50 720 96.0 - 93.2 64.3 

         

8 4 75000 25 3000 25.0 6.9                                                                                     5.3 0.9 

8 6 90000 30 3000 74.9 56.4 44.5 7.9 

8 8 90000 30 3000 96.2 - 74.7 23.3 

         

10 4 90000 30 3000 17.84 2.8 0.05 0.00 

10 6 120000 40 3000 61.4 26.5 15.7 0.01 

10 8 150000 50 3000 81.4 - 39.1 3.8 

 

In Table 1, “Add” stands for “additive value function” (column 6), “3-cap” for “3-additive capacity” 

(column 7), “2-cap” for “2-additive capacity” (column 8) and “WSum” for “weighted sum” (column 9). 

The 3
rd

 column shows the total number of trials, the 4
th
, the number of instances, the 5

th
, the number of 

orders.  We display the results only for na = 4, 6; nc = 3, 4, 6, 8 and na = 8, 10; nc = 4, 6, 8. The results 
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for 3-additive capacities could never be obtained when nc = 8 (error message issued by R probably for 

lack of memory space on the computer used for the experiments).   

 

The following conclusions can be drawn from the percentages shown in Table 1: 

1. for all methods, increasing the number of criteria improves expressivity; in contrast, increasing 

the number of alternatives reduces expressivity 

2. the additive value function model is more expressive than the Choquet integral with 3-additive 

capacity; the latter is slightly more expressive than Choquet integral with 2-additive capacity; 

finally, this method is more expressive than the weighted sum. These differences are all the more 

marked that na is large  

3. 10 alternatives described by 6 criteria is very seldom representable by a weighted sum while 

additive value functions can represent it in 60% of the cases.  

 

 

Table 2. Comparing expressivity (%) 

na nc TotNb Inst Orders Add/ 

3cap 

Add/ 

2cap 

3cap/ 

2cap 

2cap/ 

WSum 

2cap/ 

Add 

3cap/ 

Add 

4 3 2400 100 24 9,5 9,5 0,0 14,7 0,9 0,9 

4 4 2400 100 24 3,6 5,0 1,4 13,9 0,0 0,0 

4 6 2400 100 24 3,1 3,3 0,2 12,5 0,0 0,0 

4 8 2400 100 24 - 0,9 0,0 4,3 0,0 - 

           

6 3 36000 50 720 13,2 16,6 3,4 16,6 0,2 0,2 

6 4 43920 61 720 13,2 16,6 3,4 16,6 0,2 0,2 

6 6 36000 50 720 9,5 12,8 3,3 27,4 0,04 0,07 

6 8 36000 50 720 - 2,8 - 29,0 0,0 - 

           

8 4 75000 25 3000 18,1 19,6 1,5 4,4 0,4 0.4 

8 6 90000 30 3000 18,7 30,5 11,9 36,6 0,15 0,05 

8 8 90000 30 3000 - 21,6 - 51,3 0,05 - 

           

10 4 90000 30 3000 15,1 17,8 2,7 0,0 0,0 0,3 

10 6 50000 50 1000 29,7 40,0 10,8 15,7 0,3 0,0 

10 8 150000 50 3000 - 42,3 - 35,3 0,4 - 

 

The figures in Table 1 do not tell us the percentages of the cases in which a representation by a Choquet 

integral with 2- or 3-additive capacities exists while no additive value function can fit the data, and the 

other way around. Such results are displayed in Table 2. For instance, column labeled “Add/3cap” yields 

the percentage of orders that can be represented by an additive value function but cannot be represented 

using a Choquet integral with 3-additive capacities; column “3cap/Add” describes the opposite case; 

3cap/2cap assesses the improvement generated by passing from 2- to 3-additive capacities. Let us 

explain, for example, how to read the first row in table 2. One hundred instances (Inst) of 4 alternatives  
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 (na) evaluated on 3 criteria (nc) have been generated. All possible orders on these alternatives (Orders = 

24) have been considered, which makes a total number of 2400 trials (TotNb = 2400). Among them, 

9,5% can be represented by an additive value function but not by a Choquet integral with 3-additive 

capacity (Add/3cap) or 2-additive capacity (Add/2cap). Using a 3-additive capacity does not enable to 

represent any of the orders that cannot be represented by a Choquet model with 2-additive capacity 

(3cap/2cap = 0%). 14,7% of the orders that cannot be represented by a weighted sum can be represented 

by a Choquet model with 2-additive capacity (2cap/WSum) but this is only the case for 0,9% of the 

orders that cannot be represented by an additive value function (2cap/Add). Using 3-addititive capacities 

instead of 2-additive ones does not improve this figure (3cap/Add).  

 

From the figures in Table 2, we see that there are very few cases (less than 1%) in which 2- or 3- additive 

capacities can represent an order that additive value functions cannot. The advantage of using 3- instead 

of 2-additive capacities is not striking up to na = 6. For na = 8 (resp. 10), the gain of using a 3-additive 

capacity reaches 11,9% (resp. 10,8%). This would probably be all the more true for nc = 8 but it becomes 

computationally difficult to find a 3-additive capacity for problems of this size.  

 

Comparing the expressivity of the Choquet integral with that of a weighted sum, we see that the 

percentage grows from about 12% for na = 4 up to around 25% for na = 6; for na = 8 and 10, the 

percentage is extremely small for 4 criteria and rapidly grows with the number of criteria.  

 

The conclusions drawn form Tables 1 and 2 can be confirmed in the following way. In the linear 

programming formulation of the representation problem as well as in the search for a capacity, we have 

used the minimal score difference  between consecutive alternatives in the ranking as an objective 

function. So the larger this difference, the easier the model fits the data. Figures 1 and 2 below represent 

the histogram of the values of  obtained in the different models.  

 

 

    Figure 1. Values of : Choquet vs. Additive  Figure 2. Values of : Variants of Additive 

 

Figure 1 shows that large values of  are much more frequent for additive value function representations. 

Figure 2 shows that for two segments or three segments value functions there is already a tendency to 

obtain larger values of  than with the Choquet integral. Note that additive value functions “with one 

segment” correspond to the weighted sum and serve as reference point.  
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Expressivity as a function of  the Kendall distance w.r.t. a reference order.   

We have also studied the expressivity of the models as a function of the distance of the random orders 

from a reference order. The experimental design is the following. We generate the alternatives and the 

orders as above. For a given set of alternative we compute the sum of the evaluations of each alternative 

(unweighted sum) and we rank the alternatives according to that score. The corresponding ranking serves 

as a reference order. For each random order that is generated, we compute its Kendall distance to the 

reference order (i.e., essentially, the number of pairs in the symmetric difference of the two orders). We 

sort the generated orders in categories of Kendall distances from the reference order. Three experiments 

have been performed, for 5 (resp. 10, 20) alternatives and 4 (resp. 6, 8) criteria. In each experiment, 100 

sets of alternatives are randomly generated and all permutations (120) for the case na = 5; in the cases of 

na = 10 and 20, 300 permutations have been drawn at random. What is observed is a slow decrease of the 

expressivity of all methods for increasing Kendall distances.  

 

4. CONCLUSIONS AND PERSPECTIVES  

The additive value function model appears to be definitely more expressive than the Choquet integral 

(using tractable 2- or 3-additive capacities) at least for the ranges of numbers of alternatives and criteria 

that we have explored. These ranges are rather typical in the applications of methods for learning 

preferences such as UTA (Jacquet-Lagrèze and Siskos, 1982) or UTA-GMS (Greco et al., 2008). It 

cannot be excluded that our conclusions could be challenged in applications with larger learning sets. 

However, we have made exploratory trials with 20 alternatives and 8 criteria (using additive value 

functions, Choquet with 2-additive capacities and weighted sum) resulting in outcomes that are in line 

with our previous conclusions.  

 

If we now compare the Choquet integral with the weighted sum, we see that using Choquet with 2- or 3-

additive capacities may increase significantly the percentage of representable orders (around 25% on 

average, for 2-additive capacities). The gain of expressivity w.r.t. the weighted sum seems to be maximal 

when na is approximately equal to nc (but this requires further confirmation). 

 

The Choquet integral is sometimes used instead of a sum in the additive value function model (Grabisch 

et al. 2004), obviously increasing the expressivity of the latter. An indication on how much more 

expressive is such a model as compared with the simple additive value function model can be obtained 

by comparing the expressivity of the Choquet integral with respect to the weighted sum. Indeed, 

assuming that the distribution of the values of marginal value functions is uniform, we may interpret our 

randomly generated vectors as representing the marginal values of the alternatives instead of just 

performances. Under this hypothesis, a weighted sum of these marginal values can be interpreted as an 

additive value function. Hence, the results of the previous paragraph may be considered as an estimate of 

what can be gained in terms of expressivity by considering a Choquet integral instead of a sum in the 

additive value function model.  

 

In view of these results, one might be tempted to recommend to restrict the use of a Choquet integral to 

the cases in which marginal value functions have already been elicited and there is strong evidence of   

interaction between criteria (since the notion of interaction is far from being clear when evaluations have 

not been recoded into marginal values or at least when the scales of the various criteria have not been  

made commensurate; see Grabisch and Labreuche, 2004, on the notion of commensurateness). We might 

be less restrictive however if we consider that the most expressive models are not necessarily the best 

choice in learning models, since they generally involve the specification of many parameters. Indeed, if 

information about the DM’s preferences is scarce, using a less expressive model, such as a 2-additive 

Choquet integral, may be advocated since it will generally lead to a lower degree of indetermination of 

the parameters than with an additive utility function. This is all the more true that the DM or the analyst 

has the intuition that the criteria do interact (although, again, such an “intuition” should be considered 
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with a dose of critical sense). Note that an alternative to general additive value functions is using 

piecewise linear additive value functions as is done in UTA for instance (Jacquet-Lagrèze and Siskos, 

1982); such models require the elicitation of fewer parameters than the general additive value function 

model.   

The empirical study accounted for above is by no means the final word on these questions. Many 

interesting points remain to be explored, among which we would like to mention: 

 for a fixed number of criteria, study the impact of the size of the learning set (consisting of 

randomly generated alternatives) on the possibility of representing the DM’s preferences by an 

additive value function or a Choquet integral. More precisely, the experiment could be done as 

follows: choose a maximal value for na, for instance na = 100; generate na alternatives and a 

random order on them; select more and more alternatives from the set of na generated 

alternatives and see whether the ranking induced on the subset is representable by a given model; 

stop when it is no longer representable and iterate the process with another random order; iterate 

with another set of alternatives 

 study the frequency with which randomly generated sets of alternatives and orders are not 

compatible with the preference independence assumption; study the frequency of dominated 

alternatives, i.e. alternatives that are worse on all criteria than another alternative in a randomly 

generated set of alternatives 

 try to better understand the notion of interaction between criteria; this could be done for instance 

by studying the orders that are representable by a Choquet integral but not by an additive value 

function. 
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